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We have seen in the lecture about Fourier transform that the spectrum of rectangle signal x(t) = Rj_, ;(t) is the sinc

D
function X (w) = 2sin(aw) = 2asinc(aw). The support of this spectrum is not bounded. More generally, if y is a time-limited

signal, i.e. its time support is a bounded interval [a, b], then it can be seen as the product y(t) = z(t) Ry, 5(t) = z(t)x(t)
where z may not be a time-limited signal. Applying the multiplication property of Fourier transform, we can write Y = Z x X,
thus even if spectrum Z has bounded support, signal y will not be frequency-limited. Therefore, a time-limited signal
cannot be frequency-limited. Conversely, using the inverse Fourier transform of a rectangle spectrum, we show that a
frequency-limited signal cannot be time-limited. The extreme case is the Dirac delta function § which is exactly located at
time t = 0 but whose spectrum w — 1 is spread over all the frequencies. The goal of this lecture is to prove a lower bound
on the product of time and frequency spreadings called the Heisenberg-Gabor inequality.

We first recall the following notions:

» The energy of a signal x € L?(R,K) is

EC) = Il = (xx) = [ ()P
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> Plancherel’s identity: Let a signal x € L2(R, K) whose Fourier transform is denoted X = F(x). Then
- 2 I 2
E(x) = x(t)[%dt = 5 (X (w)["dw
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Remarks:

» Plancherel’s identity exhibits a relation between the energy in the time domain and the energy in the frequency domain,
represented by the two integrals.

» Consider a signal x € L?(RR, K) with non-zero energy E(x) # 0. By Plancherel’s identity,
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Therefore, we can interpret functions t — (1)l and w — X(w)] as probability density functions. The objective of
E(x) 2mE(x)

this lecture is to establish a relation between the spreadings of the energy in time and frequency, i.e. the standard
deviations of these density functions.

Definition 0.1 (Average position, spreading)
Let a signal x € L%(IR, K) with non-zero energy and Fourier transform X. We define:

» the average position in time:
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» the spreading in time:
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» the average position in frequency:
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» the spreading in frequency:

Lemma 0.1
Let a signal x € Lz(R, K) with non-zero energy. We define the following signal:

VteR  y(t) = x(t+ my(x)) e M0t
This signal y satisfies the following properties:
> it has the same energy as x: E(y) = E(x);

> it has a zero average position in time and frequency: m,(y) = 0 and m,,(y) = 0;

» it has the same spreadings as x in time and frequency: o+(y) = o+(x) and o,,(y) = 0w (x).

PROOF : By definition of the energy, using the identity |e~"™+()|2 = 1 and the change of variable t — t 4+ m;(x), we get:
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We have:
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By the change of variable t — t + my(x), we get:
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To compute the average position of y in frequency, we determine its Fourier transform Y. We set z : t — x(t + m(x)) so
thaty : t > z(t)e ™)t Then we have Z(w) = X(w)e™: ) and

Y(w) = Z(w + my,(x)) = X(w + my(x))emCwtme(x)

We deduce:
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where we used the same reasoning as in the computation of m;(y).
Finally, by the change of variable t — t + m;(x) we have:
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Using the Fourier transform of y, we have:
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which concludes the proof of the lemma. [ ]

Theorem 0.2 (Heisenberg-Gabor inequality)
For any signal x € L?(R, K) with non-zero energy,
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PROOF : Using the previous lemma, we have:
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Since the Fourier transform of derivative y’ is F(y') : w — iwY(w), applying Plancherel’s identity, we get:
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Using Cauchy-Schwarz inequality, we obtain:
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Since the modulus of a complex number is greater or equal to its real part, we have
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Since Re (y(t)y’(t) ) is the derivative of > integration by parts gives:
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yielding the expected result. [

Remarks:



» If we want to use frequency f instead of w = 270f, we have:
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Then the Heisenberg-Gabor inequality becomes:
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» We look for the signals reaching the lower bound of the Heisenberg-Gabor inequality. According to the proof, such
signals must be real-valued and they must satisfy the Cauchy-Schwarz equality, i.e. there exists a constar12t a€eR
such that y'(t) = aty(t). The solutions of this differential equation are the functions of the form y(t) = Ke > . When
a < 0, we recognize the gaussian functions. The existence of these functions shows that the lower bound is optimal.



