Time-frequency duality

Guillaume Frèche

Version 1.0

We have seen in the lecture about Fourier transform that the spectrum of rectangle signal $x(t) = R_{[-a,a]}(t)$ is the sinc function $X(\omega) = \frac{2 \sin(a\omega)}{\omega} = 2a \operatorname{sinc}(a\omega)$. The support of this spectrum is not bounded. More generally, if y is a time-limited signal, i.e. its time support is a bounded interval [a, b], then it can be seen as the product $y(t)=z(t)R_{[a,b]}(t)=z(t)x(t)$ where z may not be a time-limited signal. Applying the multiplication property of Fourier transform, we can write $Y = Z \times X$, thus even if spectrum Z has bounded support, signal y will not be frequency-limited. Therefore, a time-limited signal cannot be frequency-limited. Conversely, using the inverse Fourier transform of a rectangle spectrum, we show that a frequency-limited signal cannot be time-limited. The extreme case is the Dirac delta function δ which is exactly located at time $t = 0$ but whose spectrum $\omega \mapsto 1$ is spread over all the frequencies. The goal of this lecture is to prove a lower bound on the product of time and frequency spreadings called the **Heisenberg-Gabor** inequality. We first recall the following notions:

The **energy** of a signal $x \in L^2(\mathbb{R}, \mathbb{K})$ is

$$
E(x) = ||x||^2 = \langle x, x \rangle = \int_{-\infty}^{+\infty} |x(t)|^2 dt
$$

Plancherel's identity: Let a signal $x \in L^2(\mathbb{R}, \mathbb{K})$ whose Fourier transform is denoted $X = \mathcal{F}(x)$. Then

$$
E(x)=\int_{-\infty}^{+\infty}|x(t)|^2dt=\frac{1}{2\pi}\int_{-\infty}^{+\infty}|X(\omega)|^2d\omega
$$

Remarks:

- \blacktriangleright Plancherel's identity exhibits a relation between the energy in the time domain and the energy in the frequency domain, represented by the two integrals.
- ► Consider a signal $x \in L^2(\mathbb{R}, \mathbb{K})$ with non-zero energy $E(x) \neq 0$. By Plancherel's identity,

$$
1=\int_{-\infty}^{+\infty}\frac{|x(t)|^2}{E(x)}dt=\int_{-\infty}^{+\infty}\frac{|X(\omega)|^2}{2\pi E(x)}d\omega
$$

Therefore, we can interpret functions $t \mapsto \frac{|x(t)|^2}{\sqrt{2}}$ $\frac{\vert x(t) \vert^2}{E(x)}$ and $\omega \mapsto \frac{\vert X(\omega) \vert^2}{2 \pi E(x)}$ $\sqrt{\frac{2\pi E(x)}}$ as probability density functions. The objective of this lecture is to establish a relation between the spreadings of the energy in time and frequency, i.e. the standard deviations of these density functions.

Definition 0.1 (Average position, spreading)

Let a signal $x \in L^2(\mathbb{R}, \mathbb{K})$ with non-zero energy and Fourier transform X. We define:

 \blacktriangleright the average position in time:

$$
m_t(x) = \int_{-\infty}^{+\infty} t \frac{|x(t)|^2}{E(x)} dt
$$

 \blacktriangleright the spreading in time:

$$
\sigma_t(x) = \left(\int_{-\infty}^{+\infty} (t - m_t(x))^2 \frac{|x(t)|^2}{E(x)} dt\right)^{\frac{1}{2}}
$$

 \blacktriangleright the average position in frequency:

$$
m_{\omega}(x) = \int_{-\infty}^{+\infty} \omega \frac{|X(\omega)|^2}{2\pi E(x)} d\omega
$$

 \blacktriangleright the spreading in frequency:

$$
\sigma_{\omega}(x) = \left(\int_{-\infty}^{+\infty} (\omega - m_{\omega}(x))^2 \frac{|X(\omega)|^2}{2\pi E(x)} d\omega\right)^{\frac{1}{2}}
$$

Lemma 0.1

Let a signal $x \in L^2(\mathbb{R}, \mathbb{K})$ with non-zero energy. We define the following signal:

$$
\forall t\in\mathbb{R}\qquad y(t)=x\left(t+m_t(x)\right)e^{-im_\omega(x)t}
$$

This signal y satisfies the following properties:

- it has the same energy as x: $E(y) = E(x)$;
- it has a zero average position in time and frequency: $m_t(y) = 0$ and $m_\omega(y) = 0$;
- it has the same spreadings as x in time and frequency: $\sigma_t(y) = \sigma_t(x)$ and $\sigma_\omega(y) = \sigma_\omega(x)$.

PROOF : By definition of the energy, using the identity $|e^{-im_\omega(x)t}|^2 = 1$ and the change of variable $t \mapsto t + m_t(x)$, we get:

$$
E(y) = \int_{-\infty}^{+\infty} |y(t)|^2 dt = \int_{-\infty}^{+\infty} |x(t + m_t(x)) e^{-im_\omega(x)t}|^2 dt = \int_{-\infty}^{+\infty} |x(t)|^2 dt = E(x)
$$

We have:

$$
m_t(y) = \int_{-\infty}^{+\infty} t \frac{|y(t)|^2}{E(y)} dt = \int_{-\infty}^{+\infty} t \frac{|x(t+m_t(x))|^2}{E(x)} dt
$$

By the change of variable $t \mapsto t + m_t(x)$, we get:

$$
m_t(y) = \int_{-\infty}^{+\infty} (t - m_t(x)) \frac{|x(t)|^2}{E(x)} dt = \int_{-\infty}^{+\infty} t \frac{|x(t)|^2}{E(x)} dt - m_t(x) \int_{-\infty}^{+\infty} \frac{|x(t)|^2}{E(x)} dt = 0
$$

To compute the average position of y in frequency, we determine its Fourier transform Y. We set $z : t \mapsto x(t + m_t(x))$ so that $y:t\mapsto z(t)e^{-im_{\omega}(x)t}.$ Then we have $Z(\omega)=X(\omega)e^{im_{t}(x)\omega},$ and

$$
Y(\omega) = Z(\omega + m_{\omega}(x)) = X(\omega + m_{\omega}(x))e^{im_t(x)(\omega + m_{\omega}(x))}
$$

We deduce:

$$
m_{\omega}(y) = \int_{-\infty}^{+\infty} \omega \frac{|Y(\omega)|^2}{2\pi E(y)} d\omega = \int_{-\infty}^{+\infty} \omega \frac{|X(\omega + m_{\omega}(x))|^2}{2\pi E(x)} d\omega = 0
$$

where we used the same reasoning as in the computation of $m_t(y)$. Finally, by the change of variable $t \mapsto t + m_t(x)$ we have:

$$
\sigma_t(y) = \left(\int_{-\infty}^{+\infty} t^2 \frac{|y(t)|^2}{E(y)} dt\right)^{\frac{1}{2}} = \left(\int_{-\infty}^{+\infty} t^2 \frac{|x(t + m_t(x))|^2}{E(x)} dt\right)^{\frac{1}{2}} = \left(\int_{-\infty}^{+\infty} (t - m_t(x))^2 \frac{|x(t)|^2}{E(x)} dt\right)^{\frac{1}{2}} = \sigma_t(x)
$$

Using the Fourier transform of y , we have:

$$
\sigma_{\omega}(y) = \left(\int_{-\infty}^{+\infty} \omega^2 \frac{|Y(\omega)|^2}{2\pi E(y)} d\omega\right)^{\frac{1}{2}} = \left(\int_{-\infty}^{+\infty} \omega^2 \frac{|X(\omega + m_{\omega}(x))|^2}{2\pi E(x)} d\omega\right)^{\frac{1}{2}} = \left(\int_{-\infty}^{+\infty} (\omega - m_{\omega}(x))^2 \frac{|X(\omega)|^2}{2\pi E(x)} d\omega\right)^{\frac{1}{2}} = \sigma_{\omega}(x)
$$

which concludes the proof of the lemma.

Theorem 0.2 (Heisenberg-Gabor inequality)

For any signal $x \in L^2(\mathbb{R}, \mathbb{K})$ with non-zero energy,

$$
\sigma_t(x)\sigma_\omega(x)\geq \frac{1}{2}
$$

PROOF : Using the previous lemma, we have:

$$
\sigma_t(x)\sigma_\omega(x)=\sigma_t(y)\sigma_\omega(y)=\frac{1}{E(y)}\left(\int_{-\infty}^{+\infty}t^2|y(t)|^2dt\right)^{\frac{1}{2}}\left(\frac{1}{2\pi}\int_{-\infty}^{+\infty}\omega^2|Y(\omega)|^2d\omega\right)^{\frac{1}{2}}
$$

Since the Fourier transform of derivative y' is $F(y') : \omega \mapsto i\omega Y(\omega)$, applying Plancherel's identity, we get:

$$
\frac{1}{2\pi}\int_{-\infty}^{+\infty}|\mathcal{F}(y')(\omega)|^2d\omega=\int_{-\infty}^{+\infty}|y'(t)|^2dt
$$

yielding

$$
\sigma_t(x)\sigma_\omega(x) = \frac{1}{E(y)} \left(\int_{-\infty}^{+\infty} |ty(t)|^2 dt \right)^{\frac{1}{2}} \left(\int_{-\infty}^{+\infty} |y'(t)|^2 dt \right)^{\frac{1}{2}}
$$

Using Cauchy-Schwarz inequality, we obtain:

$$
\sigma_t(x)\sigma_\omega(x) \geq \frac{1}{E(y)}\left|\int_{-\infty}^{+\infty} ty(t)\overline{y'(t)}dt\right|
$$

Since the modulus of a complex number is greater or equal to its real part, we have

$$
\left|\int_{-\infty}^{+\infty} ty(t)\overline{y'(t)}dt\right| \ge \left|\text{Re}\left(\int_{-\infty}^{+\infty} ty(t)\overline{y'(t)}dt\right)\right| = \left|\int_{-\infty}^{+\infty} t\text{Re}\left(y(t)\overline{y'(t)}\right)dt\right|
$$

Since Re $(y(t)\overline{y'(t)})$ is the derivative of $\frac{|y(t)|^2}{2}$ $\frac{(-9)}{2}$, integration by parts gives:

> $\overline{}$ $\overline{}$ $\overline{}$ $\overline{}$

$$
\int_{-\infty}^{+\infty} t \text{Re} \left(y(t) \overline{y'(t)} \right) dt = \frac{1}{2} \int_{-\infty}^{+\infty} |y(t)|^2 dt = \frac{E(y)}{2}
$$

yielding the expected result.

Remarks:

 \blacksquare

П

If we want to use frequency f instead of $\omega = 2\pi f$, we have:

$$
m_f(x) = \int_{-\infty}^{+\infty} f \frac{|X(\omega)|^2}{E(x)} d f = \frac{m_\omega(x)}{2\pi} \quad \text{and} \quad \sigma_f(x) = \left(\int_{-\infty}^{+\infty} (f - m_f(x))^2 \frac{|X(\omega)|^2}{2E(x)} df\right)^{\frac{1}{2}} = \frac{\sigma_\omega(x)}{2\pi}
$$

Then the Heisenberg-Gabor inequality becomes:

$$
\sigma_t(x)\sigma_f(x)\geq \frac{1}{4\pi}
$$

▶ We look for the signals reaching the lower bound of the Heisenberg-Gabor inequality. According to the proof, such signals must be real-valued and they must satisfy the Cauchy-Schwarz equality, i.e. there exists a constant $\alpha \in \mathbb{R}$ such that $y'(t) = \alpha t y(t)$. The solutions of this differential equation are the functions of the form $y(t) = Ke^{\frac{\alpha t^2}{2}}$. When $\alpha < 0$, we recognize the gaussian functions. The existence of these functions shows that the lower bound is optimal.