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We have seen in the lecture about Fourier transform that the spectrum of rectangle signal x(t) = R[−a,a](t) is the sinc

function X (ω) =
2 sin(aω)

ω
= 2a sinc(aω). The support of this spectrum is not bounded. More generally, if y is a time-limited

signal, i.e. its time support is a bounded interval [a, b], then it can be seen as the product y(t) = z(t)R[a,b](t) = z(t)x(t)

where z may not be a time-limited signal. Applying the multiplication property of Fourier transform, we can write Y = Z ∗ X ,

thus even if spectrum Z has bounded support, signal y will not be frequency-limited. Therefore, a time-limited signal

cannot be frequency-limited. Conversely, using the inverse Fourier transform of a rectangle spectrum, we show that a

frequency-limited signal cannot be time-limited. The extreme case is the Dirac delta function δ which is exactly located at

time t = 0 but whose spectrum ω 7→ 1 is spread over all the frequencies. The goal of this lecture is to prove a lower bound

on the product of time and frequency spreadings called the Heisenberg-Gabor inequality.

We first recall the following notions:

I The energy of a signal x ∈ L2(R,K) is

E (x) = ‖x‖2 = 〈x , x〉 =
∫ +∞

−∞
|x(t)|2dt

I Plancherel’s identity: Let a signal x ∈ L2(R,K) whose Fourier transform is denoted X = F(x). Then

E (x) =

∫ +∞

−∞
|x(t)|2dt = 1

2π

∫ +∞

−∞
|X (ω)|2dω

Remarks:

I Plancherel’s identity exhibits a relation between the energy in the time domain and the energy in the frequency domain,

represented by the two integrals.

I Consider a signal x ∈ L2(R,K) with non-zero energy E (x) 6= 0. By Plancherel’s identity,

1 =

∫ +∞

−∞

|x(t)|2

E (x)
dt =

∫ +∞

−∞

|X (ω)|2

2πE (x)
dω

Therefore, we can interpret functions t 7→ |x(t)|
2

E (x)
and ω 7→ |X (ω)|2

2πE (x)
as probability density functions. The objective of

this lecture is to establish a relation between the spreadings of the energy in time and frequency, i.e. the standard

deviations of these density functions.

Definition 0.1 (Average position, spreading)

Let a signal x ∈ L2(R,K) with non-zero energy and Fourier transform X . We define:

I the average position in time:

mt(x) =

∫ +∞

−∞
t
|x(t)|2

E (x)
dt
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I the spreading in time:

σt(x) =

(∫ +∞

−∞
(t −mt(x))

2 |x(t)|2

E (x)
dt

) 1
2

I the average position in frequency:

mω(x) =

∫ +∞

−∞
ω
|X (ω)|2

2πE (x)
dω

I the spreading in frequency:

σω(x) =

(∫ +∞

−∞
(ω −mω(x))

2 |X (ω)|2

2πE (x)
dω

) 1
2

Lemma 0.1

Let a signal x ∈ L2(R,K) with non-zero energy. We define the following signal:

∀t ∈ R y(t) = x (t +mt(x)) e
−imω(x)t

This signal y satisfies the following properties:

I it has the same energy as x : E (y) = E (x);

I it has a zero average position in time and frequency: mt(y) = 0 and mω(y) = 0;

I it has the same spreadings as x in time and frequency: σt(y) = σt(x) and σω(y) = σω(x).

PROOF : By definition of the energy, using the identity |e−imω(x)t |2 = 1 and the change of variable t 7→ t +mt(x), we get:

E (y) =

∫ +∞

−∞
|y(t)|2dt =

∫ +∞

−∞
|x (t +mt(x)) e

−imω(x)t |2dt =
∫ +∞

−∞
|x(t)|2dt = E (x)

We have:

mt(y) =

∫ +∞

−∞
t
|y(t)|2

E (y)
dt =

∫ +∞

−∞
t
|x (t +mt(x)) |2

E (x)
dt

By the change of variable t 7→ t +mt(x), we get:

mt(y) =

∫ +∞

−∞
(t −mt(x))

|x(t)|2

E (x)
dt =

∫ +∞

−∞
t
|x(t)|2

E (x)
dt −mt(x)

∫ +∞

−∞

|x(t)|2

E (x)
dt = 0

To compute the average position of y in frequency, we determine its Fourier transform Y . We set z : t 7→ x(t +mt(x)) so

that y : t 7→ z(t)e−imω(x)t . Then we have Z (ω) = X (ω)e imt(x)ω , and

Y (ω) = Z (ω +mω(x)) = X (ω +mω(x))e
imt(x)(ω+mω(x))

We deduce:

mω(y) =

∫ +∞

−∞
ω
|Y (ω)|2

2πE (y)
dω =

∫ +∞

−∞
ω
|X (ω +mω(x))|2

2πE (x)
dω = 0
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where we used the same reasoning as in the computation of mt(y).

Finally, by the change of variable t 7→ t +mt(x) we have:

σt(y) =

(∫ +∞

−∞
t2
|y(t)|2

E (y)
dt

) 1
2

=

(∫ +∞

−∞
t2
|x(t +mt(x))|2

E (x)
dt

) 1
2

=

(∫ +∞

−∞
(t −mt(x))

2 |x(t)|2

E (x)
dt

) 1
2

= σt(x)

Using the Fourier transform of y , we have:

σω(y) =

(∫ +∞

−∞
ω2 |Y (ω)|2

2πE (y)
dω

) 1
2

=

(∫ +∞

−∞
ω2 |X (ω +mω(x))|2

2πE (x)
dω

) 1
2

=

(∫ +∞

−∞
(ω −mω(x))

2 |X (ω)|2

2πE (x)
dω

) 1
2

= σω(x)

which concludes the proof of the lemma.

Theorem 0.2 (Heisenberg-Gabor inequality)

For any signal x ∈ L2(R,K) with non-zero energy,

σt(x)σω(x) ≥
1

2

PROOF : Using the previous lemma, we have:

σt(x)σω(x) = σt(y)σω(y) =
1

E (y)

(∫ +∞

−∞
t2|y(t)|2dt

) 1
2
(

1

2π

∫ +∞

−∞
ω2|Y (ω)|2dω

) 1
2

Since the Fourier transform of derivative y ′ is F(y ′) : ω 7→ iωY (ω), applying Plancherel’s identity, we get:

1

2π

∫ +∞

−∞
|F(y ′)(ω)|2dω =

∫ +∞

−∞
|y ′(t)|2dt

yielding

σt(x)σω(x) =
1

E (y)

(∫ +∞

−∞
|ty(t)|2dt

) 1
2
(∫ +∞

−∞
|y ′(t)|2dt

) 1
2

Using Cauchy-Schwarz inequality, we obtain:

σt(x)σω(x) ≥
1

E (y)

∣∣∣∣∫ +∞

−∞
ty(t)y ′(t)dt

∣∣∣∣
Since the modulus of a complex number is greater or equal to its real part, we have∣∣∣∣∫ +∞

−∞
ty(t)y ′(t)dt

∣∣∣∣ ≥ ∣∣∣∣Re

(∫ +∞

−∞
ty(t)y ′(t)dt

)∣∣∣∣ = ∣∣∣∣∫ +∞

−∞
tRe

(
y(t)y ′(t)

)
dt

∣∣∣∣
Since Re

(
y(t)y ′(t)

)
is the derivative of

|y(t)|2

2
, integration by parts gives:

∣∣∣∣∫ +∞

−∞
tRe

(
y(t)y ′(t)

)
dt

∣∣∣∣ = 1

2

∫ +∞

−∞
|y(t)|2dt = E (y)

2

yielding the expected result.

Remarks:
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I If we want to use frequency f instead of ω = 2πf , we have:

mf (x) =

∫ +∞

−∞
f
|X (ω)|2

E (x)
df =

mω(x)

2π
and σf (x) =

(∫ +∞

−∞
(f −mf (x))

2 |X (ω)|2

2E (x)
df

) 1
2

=
σω(x)

2π

Then the Heisenberg-Gabor inequality becomes:

σt(x)σf (x) ≥
1

4π

I We look for the signals reaching the lower bound of the Heisenberg-Gabor inequality. According to the proof, such

signals must be real-valued and they must satisfy the Cauchy-Schwarz equality, i.e. there exists a constant α ∈ R
such that y ′(t) = αty(t). The solutions of this differential equation are the functions of the form y(t) = Ke

αt2

2 . When

α < 0, we recognize the gaussian functions. The existence of these functions shows that the lower bound is optimal.
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